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Abstract. Let T be a stochastic map on aC∗-algebraA, andω a faithful state. Letπω(T )
be the induced action ofT on the GNS Hilbert spaceHω, andπω(T )∗ its adjoint onHω. We
sayT obeys detailed balance II ifπω(T )∗ is also induced by a stochastic map. In that case we
prove thatπω(T ) is a contraction onHω commuting with the modular operator. The relation
of this idea to microscopic reversibility is discussed. An entropy estimate is presented.

1. Introduction

LetA be aC∗-algebra with identity, and letTt : A→ A be a semigroup of linear stochastic
maps. We consider the case wheret = 0, 1, . . . (discrete time). In this case the semigroup
is the family of maps generated by a single stochastic mapT = T1 : A → A. ThusTt
obeys

(i) Tt is positive: Tt (A∗A) > 0 for all A ∈ A.
(ii) Tt (1) = 1.
(iii) Ts ◦ Tt = Ts+t , t, s > 0.

By Størmer’s theorem, eachTt is a norm contraction [6, corollary 3.2.6].
The natural actionT [t on the dual spaceA∗

T
[
t ϕ(A) = ϕ(TtA) ϕ ∈ A∗ A ∈ A (1)

maps the set of states6(A) ⊂ A∗ to itself. We shall be interested in a kind of inverse to
this natural action; its existence is not clear unless we make further assumptions.

In non-equilibrium, isothermal quantum statistical mechanics we have a faithful state
ω, the equilibrium state at someβ, invariant underT [t . The Gelfand–Naimark–Segal
construction then gives us a representationπω of A on a Hilbert spaceHω, with cyclic
vector�ω, such that

〈�ω, πω(A)�ω〉 = ω(A).
The action ofTt onA induces an action on the dense setπω(A)�ω ⊆ Hω, which we denote
by πω(Tt ) and which is defined by

πω(Tt )πω(A)�ω = πω(TtA)�ω. (2)

The question arises as to whetherπω(Tt ) is bounded or even closable. This problem goes
to the heart of Tomita–Takesaki theory. This important question was raised in [19, 20]; in
the case of continuous time it was shown thatπω(Tt ) is a contraction under one further
condition, which will be called detailed balance I, and which is related to the existence of a
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form of time-reversal for the underlying dynamics. For this reason, chemists [5] prefer the
more accurate term ‘microscopic reversibility’ for this notion, reserving detailed balance for
the original use of Tolman [28]. However, ‘detailed balance’ has permeated the literature in
physics, and even mathematics, after the paper of Glauber [14], and we shall retain it. It is
easy to check that whenTt is an automorphism, then on states ofHω, πω(Tt ) corresponds
to T [−t .

It is noteworthy that in [19, 20] it was not necessary to assume completely positivity
of the mapsTt : this leads to an easy proof of the contractivity. This raises the question as
to whether a similar result holds in the case of discrete time. Again, even two-positivity
leads to a short proof, by Kadison’s inequality [16]. In this paper we formulate the general
condition, detailed balance II, in the form:πω(T )∗ is induced from a stochastic map (denoted
T β). This implies thatω is a fixed point ofT [. In section 2 we show that detailed balance I
implies detailed balance II, and that detailed balance II implies thatπω(Tt ) is a contraction
in Hω. This gives a shorter proof than in [19, 20], and also extends the result to discrete
time. Inasmuch as detailed balance II is more general than detailed balance I (and we have
no complete proof of this) the present result is more general than [19, 20]. The dynamics
advocated in [24] are all projections of random conservative dynamics, and were shown to
satisfy detailed balance II, as well as being completely positive.

In the classical case, in which the algebra is abelian, thatω is a fixed point ofT [t is
sufficient for detailed balance II (see [25, lemmas 5.23 and 5.24]). This is not so in the
quantum case, since as we show in section 2 there are stochastic mapsT , even in two
dimensions, for whichπω(T ) is not a contraction. This is traced to the fact that it is not
Hermitian, i.e. it does not map the self-adjoint operators to themselves. We then show that
if, in addition to being closable and having�ω as a fixed point,πω(T )∗ is induced by a
Hermitian mapT β , thenT β is positive, and so is a stochastic map. In section 3 we discuss
the relation between the two forms of detailed balance; the section ends with some entropy
estimates.

2. Detailed balance and contractivity

Suppose thatT is a stochastic map onA and thatT β is another related by

〈πω(A)�ω, πω(T )πω(B)�ω〉 = 〈πω(T β)πω(A)�ω, πω(B)�ω〉 (3)

which from the definition gives

ω(A∗T (B)) = ω(T β(A∗)B). (4)

This condition, called detailed balance II, impliesT -invariance of the stateω:

ω(T (A)) = ω(1T (A)) = ω(T β(1)A) = ω(A).
SinceT β is positive, it is Hermitian, and since it is stochastic, it is a contraction in

norm. Then

‖πω(T )πω(A)�ω‖2 = ω(T (A∗)T (A)) = ω(A∗T βT (A))
6 ω(A∗A)1/2ω(T β(T A))∗T β(T (A)))1/2

= ω(A∗A)1/2ω(A∗T β(T (T β(T (A)))))1/2
6 ω(A∗A)1/2ω(A∗A)1/4ω(T β(T (T β(T A∗)))T β(T (T β(T (A)))))1/4

...

6 ω(A∗A)1−1/2nω(T β(T · · · (A∗))T β · · · T (A))1/2n



Detailed balance and quantum dynamical maps 7983

for all n. Now

ω(A∗A)1−2−n → ω(A∗A) as n→∞
|ω(B∗B)|2−n 6 ‖A‖2−(n−1) → 1 as n→∞

whereB = T β(T · · · (A)). Therefore, takingn→∞,

‖πω(T )πω(A)�ω‖2 6 ω(A∗A) = ‖πω(A)�ω‖2. (5)

Thus we have proved

Proposition 1.Detailed balance II implies the contractivity of the induced mapπω(T ) on
Hω. �

There have been various versions of the detailed balance condition; apart from [19],
one can mention [1, 4, 11, 12, 17, 15, 18]. These concern continuous time, and mostly
require complete positivity; in [18], the Hamiltonian part of the Lindblad generator is taken
to be the KMS Hamiltonian, an assumption that we do not need. Moreover, the assumption
that the generator commutes with the modular operator, made in [1] and [15], is a result
of our formulation, rather than a postulate. Neither do we need the generator to be a
normal operator, as used in [17]. Agarwal’s treatment is rigorous in finite dimensions, and
has a special form for the time-reversal operator. Alicki’s definition was given in finite
dimensions, and requires normality of the generator; in [11] (an abstract version of [4])
normality is also required, which is not used here. Comparison of [17] with detailed
balance I has been discussed in [20]; apart from complete positivity, [17] needs splitting
the generator of the semigroup which is not required here.

We now give an example, in two dimensions, which shows thatT being stochastic with
ω an invariant state is not enough to ensure thatπω(T ) is a contraction. Some condition
like detailed balance II is needed for this; in our example,T β is not a Hermitian map, and
this suggests that hermiticity rather than positivity might be enough; such an idea is indeed
shown to be so.

Example 2.Let A be the algebra of all complex 2× 2 matrices, and letωλ be the ‘Powers’
state with density matrix

ρβ =
(
λ 0

0 1− λ
)

λ = (1+ e−β)−1.

The tracial stateλ = 1
2 corresponds to the infinite-temperature stateβ = 0. Consider the

map

T (X) = T
(
x1 x2

x3 x4

)
=
(
x1 x3

x2 x4

)
.

It is well known [10] thatT is a linear, positive and identity-preserving map. It is not
strongly positive; i.e.

T (A∗A) > T (A∗)T (A) (6)

(Kadison’s inequality [16]) does not hold.
Let us consider the natural action on the states

〈T [(ωλ), A〉 = Tr(ρβT (A)) = Tr(ρβA
T )

= Tr(ρTβ A) = Tr(ρβA) = ωλ(A)
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so ωλ is a fixed point ofT [. For β < ∞, Hω is the spaceA with scalar product
〈A,B〉 = Tr(A∗B) and cyclic vectorρ1/2

β . Let us define

πβ(T )Xρ
1/2
β = T (X)ρ1/2

β .

Then we see that

‖Xρ1/2
β ‖2 = ωλ(X∗X) = λ(|x1|2+ |x3|2)+ (1− λ)(|x2|2+ |x4|2)

whereas

‖T (X)ρ1/2
β ‖2 = λ(|x1|2+ |x2|2)+ (1− λ)(|x3|2+ |x4|2).

Now we cannot have

λ(|x1|2+ |x2|2)+ (1− λ)(|x3|2+ |x4|2) 6 λ(|x1|2+ |x3|2)+ (1− λ)(|x2|2+ |x4|2)
holding for all x2, x3, at least ifλ 6= 1

2. We conclude thatπβ(T ) is not a contraction, and
so thatT β is not stochastic. A simple calculation shows that

T β
(
x1 x2

x3 x4

)
=

 x1

(
1− λ
λ

)
x3(

λ

1− λ
)
x2 x4

 .
We see that this is not a Hermitian map ifλ 6= 1/2.

We now show that positivity can be replaced by hermiticity and a closability property.
To explain our idea, let us recall the fundamental ingredients of Tomita–Takesaki theory.
Consider a von Neumann algebraM on a Hilbert spaceH with a cyclic and separating
vector�. So, the stateω(A) = (�,A�), A ∈M is faithful. Define

S0A� = A∗� A ∈M (7)

and denote the closure ofS0 by S. Let 1 be the unique, positive, self-adjoint operator and
J the unique anti-unitary operator occurring in the polar decomposition

S = J11/2. (8)

1 is called the modular operator associated with the pair(M, �) and J is called the
modular conjugation (cf [6]). The following theorem can be extracted from the proof of
[20, observation 3, theorem 3.10]:

Theorem 3.Let T be a stochastic map on a von Neumann algebraM acting on a Hilbert
spaceKω; let ω be a faithful vector state; let� ∈ Kω be the (cyclic and separating) vector
giving the stateω, and define the operator̂T on the dense setM� by

T̂ (A�) = T (A)�. (9)

Suppose that̂T is closable. LetMs be the set of self-adjoint elements ofM, and suppose
that T̂ ∗ mapsMs� to itself. Then the closure of̂T commutes strongly with the modular
operator on the domainMs�+ iMs�.

Corollary 4. Let M be a von Neumann algebra with cyclic and separating vector� and
T :M→M a stochastic map onM obeying detailed balance II. DefinêTA� = T (A)�.
Then,T̂ commutes strongly with the modular operator.

For T̂ is a densely defined contraction, and so is closable; being positive,T is Hermitian,
and so maps the self-adjoint elements to themselves. The same holds forT̂ ∗, determined
by T β , which is positive by detailed balance II. �

The next theorem is another immediate consequence of theorem 3.
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Proposition 5.LetM be a von Neumann algebra onH with cyclic and separating vector
� ∈ H and T : M → M be a stochastic map. Assume thatT β is a linear bounded
Hermitian map onM such that

〈A�, T (B)�〉 = 〈T β(A)�,B�〉. (10)

Let T̂ : H→ H be defined by

T̂ A� = T (A)�.
Then T̂ commutes strongly with the modular operator on the domainMs�+ iMs�.

Proof. T̂ βA� = T β(A)� is a densely defined linear operator. Then

〈T̂ βA�,B�〉 = 〈A�, T̂ B�〉 = 〈T̂ ∗A�,B�〉 A,B ∈M. (11)

Hence T̂ ∗ is densely defined sôT is a closable operator. Thus, another application of

theorem 3 gives the commutativity of̂T with the modular operator. �
In elementary quantum mechanics,A = B(H) andω, a faithful normal state, is given

by ω(•) = Tr(%•), where% is a density matrix onH with a densely defined inverse. For
πω(A) we take left multiplication byA, with cyclic vector� = %1/2, in the spaceK of all
Hilbert–Schmidt operators onH, with scalar product inK ≡ HH-S given by

〈X, Y 〉 = Tr(X∗Y ) X, Y ∈ Hω. (12)

Thus

πω(A)B%
1/2 = AB%1/2 A,B ∈ A. (13)

Here and in the remainder of this sectionM will denote the von Neumann algebra onK
generated by{πω(A),A ∈ A}.

The modular operator1 and the modular conjugation are defined on the dense setA%1/2

by

1A%1/2 = %A%−1/2 = %A%−1%1/2 (14)

JA%1/2 = %A∗. (15)

We see in particular that11/2A� = %1/2A%−1/2�.

Theorem 6.Let T be a normal† stochastic map onB(H) andω a faithful normal state on
B(H) such thatω ◦ T = ω; let K = Hω be the Gelfand–Naimark–Segal space and let%

be the positive, invertible density matrix inB(H) corresponding toω. Assume that there
exists a bounded Hermitian linear mapT β on B(H) such that

ω(BT (A)) = ω(T β(B)A) A,B ∈M. (16)

ThenT β is a stochastic map.

Proof. We first show thatT β(1) = 1. The T-invariance ofω and equation (16) imply

〈T β(1)∗%1/2, A%1/2〉 = ω(T β(1)A) = ω(T (A)) = ω(A)
= 〈%1/2, A%1/2〉.

HenceT β(1)%1/2 = %1/2, so as%1/2 is separating forM, we haveT β(1)∗ = T β(1) = 1.
To prove the positivity ofT β , let T † be the infinite-temperature conjugation, i.e.

Tr(A∗T (B)) = Tr(T †(A∗)B) for all A of trace class andB ∈ B(H). (17)

† That is, ultrastrongly continuous.
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Thus,T † is the restriction ofT [ defined in (1) to the density matrices, and so is positive
(asT is positive), and forA,B ∈ B(H)

Tr
(
%T β(B)A

) = ω (T β(B)A) = ω (BT (A)) = Tr (%BT (A))

= Tr
(
T †(%B)A

)
for all A.

Hence

T †(%B) = %T β(B) for all B. (18)

As T : B(H) → B(H) uniquely defines a map onM, we shall denote the latter by
the same symbol. Next, we observe that the commutativity ofT̂ with the modular
operator (proposition 5) implies the commutativity ofT with the modular automorphism
αt(•) = 1it •1−it . Moreover, a calculation shows that the modular group is given by

αt(·) = %it · %−it .

This fact, the definition ofT † and the implementability ofαt , give the commutativity ofT †

with αt ; to see this, letA ∈ B(H) and letB be of trace class. Then

Tr(αtT
†(B)A) = Tr(T †(B)α−t (A)) = Tr (BT (α−t (A)))

= Tr (Bα−t T (A)) = Tr (αt (B)T (A))

= Tr
(
T †(αt (B))A

)
.

Since this holds for allA, we have

αtT
†(B) = T †(αt (B)). (19)

We shall use this equation for certain complext ; to justify this, note again thatαt is
implemented by%it · %−it ; then equation (19) gives

%it T †(B)%−it = T †(%itB%−it ). (20)

We are interested inB of the form B = %1/2A%1/2, A ∈ B(H). For such elements an
analytic continuationt → z = t + is of eitBe−it into the strip− 1

2 6 s 6
1
2 is possible; for

the proof, note that

%it−s%1/2A%1/2%−it+s = %it
(
%1/2−sA%1/2+s) %−it

is of trace class, so%1/2A%1/2 is an analytic element in this strip, and such a set is invariant
underT †, as this commutes withαt . So the left-hand side of equation (19) has an analytic
continuation into the strip. Puttings = − 1

2 gives

%1/2T †(B)%−1/2 = T † (%1/2B%−1/2
)

(21)

for B of the formB = %1/2A%1/2 giving

%1/2T †
(
%1/2A%1/2

)
%−1/2 = T †(%A) = %T β(A) (22)

by equation (18). Hence

T β(A) = %−1/2T †
(
%1/2A%1/2

)
%−1/2 (23)

and so is positive ifA is positive. Thus we have proved theorem 6. �
In the classical case the positivity ofT β follows from that of T , as remarked in

[25, lemma 5.24]. In the quantum case, our counterexample shows that this fails, but
this theorem shows that we can replace detailed balance II by the conditions thatT β is a
Hermitian map andω is invariant underT .
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3. Relationships between two forms of detailed balance

In [19] the following condition, detailed balance I, was introduced; it involves the concept
of microscopic reversibility, which was expressed thus: there exists an anti-linear Jordan
automorphismσ of A of order two (i.e.σ 2 = id) such that

ω(σ(A)σ(B)) = ω(σ(AB)) for A,B ∈ A (24)

and

ω(A∗B) = ω (σ(B∗)σ (A)) . (25)

Then we say that a stochastic map onA obeys detailed balance I if for allA,B ∈ A we
have

ω
(
A∗T (B)

) = ω (σ(B∗)T (σ (A))) . (26)

It will become clear that detailed balance I implies detailed balance II; this will be expressed
in theorem 7. In addition, detailed balance I implies that there exists a basis in the
representation spaceHω in which π(T ) is symmetric (in the sense of (27) below). It seems
to be impossible to derive this property from detailed balance II, leading us to believe that
II is a properly weaker condition than I. In the case of a theory with a finite number of
degrees of freedom, we shall consider a similar but more detailed condition which together
with detailed balance II implies detailed balance I (see theorem 10 in section 3.2). For the
rest of this section we shall consider the system described by a pair(A = B(H), ω), as in
equations (12)–(15), and a stochastic mapT onA. We start with the easy direction.

3.1. Consequences of detailed balance I

Theorem 7.Supppose thatT obeys detailed balance I, equation (26) relative to a time-
reversalσ . ThenT obeys detailed balance II and in addition there exists a basis{yi} of
HH-S such thatπω(T ) is symmetric (not Hermitian) in this basis, i.e.

Tk` = 〈yk, πω(T )y`〉 = 〈y`, πω(T )yk〉 = T`k. (27)

Proof. From equation (26) we have

ω(A∗T (B)) = ω (σ(B∗)T σ(A))
= ω (σ(B∗)σ (σ ◦ T ◦ σ(A))

and by (25)

ω(A∗T (B)) = ω (σ ◦ T ◦ σ(A∗)B) .
Therefore the adjointT β relative to the KMS scalar product coincides with the stochastic
mapσ ◦ T ◦ σ , and soT obeys detailed balance II.

We now construct the basis in whichπω(T ) is symmetric. Indeed, the operatorJ
defined by

JA%1/2 = σ(A)%1/2 (28)

defines a conjugation onHH-S, a separable Hilbert space. Therefore there exists a real basis
{yj }, i.e. a basis with

J yj = yj for j = 1, 2, . . . . (29)

Then from equation (26) we have

〈A%1/2, πω(T )B%〉 = 〈JB%1/2, πω(T )JA%1/2〉 (30)
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and for the real basis

〈yk, πω(T )y`〉 = 〈y`, πω(T )yk〉 (31)

which proves the theorem. �
It turns out that because of the multiplicity of the eigenvalue 1 of1 we are unable to

be more specific about{yk}; in particular, we cannot prove that every dyad associated with
the spectral resolution of% can be chosen to be real (see the next topic).

3.2. Consequences of detailed balance II

To get some kind of converse to theorem 7, denote by{xi} a basis inH of the eigenvectors
of % (the density matrix ofω). This basis is not determined uniquely; for example, we can
change the phases. We define the conjugationK by

Kf = K
∑
i

(xi, f )xi =
∑
i

(xi, f )xi (32)

for f ∈ H, so that the basis isreal relative toK. It is easy to observe that

(i) K is a well-defined conjugation onH,
(ii) the map

HH-S 3 ρ 7→ KρK ≡ J (ρ) ∈ HH-S (33)

defines a conjugationJ onHH-S.

We note that% is a real vector in this basis, so thatJ %1/2 = %1/2. Without trouble we can
define an operatorA onH to be real ifA = KAK. Extended to complex combinations of
real operators we have an antilinear mapσ acting onA = B(H). Let V0 be the positive
cone of the representation, i.e.

V0 =
{
πω(A)%

1/2; A ∈ B(H), A > 0
}
. (34)

ThenJ V0 ⊆ V0, for

J πω(A∗)πω(A)%1/2 = J πω(A∗)JJ πω(A)J %1/2

= πω(σ (A∗A))%1/2 ∈ V0. (35)

Consequently, we can extendσ to a reversing operation onπω(A)′′, i.e. σ is an antilinear
Jordan automorphism of order two, of the von Neumann algebra generated by the
representation. (cf [20, lemma 4.11]). Define the operators of rank one onHH-S by

(x ⊗ y)f = (x, f )y for x, y, f ∈ H. (36)

The inner product is taken to be linear in the second factor. Then the family{x ⊗ y} form
an orthonormal basis inHH-S [27]. We note that(x ⊗ y)∗ = y ⊗ x. Then

% =
∑
n

λnPn =
∑
n

λn(xn ⊗ xn). (37)

Now let us define the operatorEij : HH-S→ HH-S by

Eijρ = PiρPj .
This is a projection, andEijEk` = 0 unlessi = k andj = `. Thus

1 =
∑
ij

λ−1
i λjEij
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is the spectral resolution of the modular operator, with eigenvaluesEij = λ−1
i λj and spectral

projection

Q
E
=

∑
i,j :Eij=E

Eij .

The action of1 onHH-S is

1ρ =
∑
ij

λ−1
i λjPiρPj .

Obviously

J1(ρ) = 1(J ρ).
We now give a lemma which explains the algebraic content of the proposed converse to
theorem 7.

Definition 8. Let us denote

ωij,k` = ω
(
xj ⊗ xiT (xk ⊗ x`)

)
(38)

ω
β

ij,k` = ω
(
xj ⊗ xiT β(xk ⊗ x`)

)
(39)

and

τij,k` = 〈xi ⊗ xj , πω(T )xk ⊗ x`〉 (40)

τ
β

ij,k` = 〈xi ⊗ xj , πω(T β) xk ⊗ x`〉. (41)

Lemma 9.Let T satisfy detailed balance II; then we have

τij,k` = (λiλk)−1/2ωij,k` (42)

τ
β

ij,k` = (λiλk)−1/2ω
β

ij,k`. (43)

Proof. By proposition 1,πω(T ) and its adjoint are bounded. We see

τij,k` = 〈xj ⊗ xi, πω(T ) xk ⊗ x`〉 = Tr
(
xj ⊗ xi · πω(T )λ−1/2

k xk ⊗ x`%1/2
)

= Tr xj ⊗ xi · T (λ−1/2xk ⊗ x`)%1/2

= Tr %1/2λ
−1/2
i xj ⊗ xi · T (λ−1/2

k xk ⊗ x`)%1/2

= (λiλk)−1/2ωij,k`.

A similar argument proves the second part. �

We are now ready to impose a further condition on a stochastic mapT which, with
detailed balance II, implies detailed balance I. We say thatT is effectively symmetricif there
exists a choice of phase of the eigenvectorsxi , i = 1, 2, . . . such that

τij,k` = τk`,ij for all i, j, k, `. (44)

Theorem 10.Let T be a stochastic map that obeys detailed balance II relative to a normal
stateω and suppose thatT is effectively symmetric. ThenT obeys detailed balance I
relative toω and the time-reversal given byσ coming from equation (33).
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Proof. By detailed balance II,πω(T ) is a bounded operator. The reversing operationσ has
the property thatxi ⊗ xj are real. By lemma 9, and the fact thatλj is real for allj , we see
thatω is effectively symmetric:

ωij,k` = ωk`,ij . (45)

This can be written as

ω(A∗T (B)) = ω(B∗T (A)) = ω(σ(B∗)T σ(A)) (46)

whereA = xi⊗xj andB = xk⊗x`. This is the condition for detailed balance I, equation (26)
for dyads. Both sides are sesquilinear, and can be extended to the complex span of the
dyads; any elementC of A is the strong∗ limit (in H) of sums of dyads, and asAn → C

strongly,An%1/2 → C%1/2 in Hω. Since the scalar product is continuous in this topology,
andπω(T ) is a bounded operator, we have proved detailed balance I in the form of (26).�

Remarks 11.Under the conditions of the theorem, one can show the following.

(i) σ commutes withT + T β , the dissipative part, and anticommutes with(T − T β), and
so also commutes with the Hamiltonian part.
(ii) We also have

τ ij,k` = τβij,k`. (47)

(iii) Consider a uniformly continuous semigroup of linear operatorsτt = etA on a Hilbert
spaceK. Then, the symmetry ofτt in some fixed basis implies the symmetry of the
infinitesimal generatorA in the same basis. Next, the symmetry ofAmn is equivalent to the
compatibility of the decompositionA into Hamiltonian and dissipative part (A = iH +D)
with the decomposition ofAmn into real and imaginary parts.
To present an example of a semigroup satisfying equation (44) let us consider a self-adjoint
operator

H =
∑
n

λnxn ⊗ xn

where{xn} is some fixed CONS inK, and a real symmetric matrixDmn. Then define the
semigroupτt = etA by fixing the infinitesimal generator

A ≡ iH +D = i
∑
n

λnxn ⊗ xn +
∑
mn

Dmnxn ⊗ xm.

Clearly, τt satisfies (44) and generallyH does not commute withD.
(iv) The conditionT = T β (which is often used, and is obviously much stronger that
detailed balance II) implies thatωij,k` is Hermitian rather than symmetric. It does not seem
to be connected with microscopic reversibility, i.e. the existence of a reversing operatorσ .
Rather, it expresses the vanishing of the Hamiltonian part, i(T − T β) of the dynamics.
Models constructed by projections of random reversible dynamics [25] do not in general
obey this hermiticity condition.
(v) Either hermiticity or symmetry implies

|ωij,kl|2 = |ωkl,ij |2 (48)

which is Pauli’s form of the detailed balance.



Detailed balance and quantum dynamical maps 7991

3.3. Dual norms

In [24, 26] and [25, theorem 5.33], the use of the dual KMS-norms in the study of Markov
chain was described. In particular, it was shown that estimates of the relative entropy play
a crucial role in the description of the states close to equilibrium. We want to close this
section with a relation between the relative entropy in the quantum case and the dual KMS-
norms, but in the opposite direction from that of [24] and [26]. The norm dual to that given
by the Kubo–Martin–Schwinger construction (cf [24]) can be defined as

‖ν‖−β = sup
‖A‖β61

|ν(A)| (49)

whereν is a state onB(H), ‖A‖2
β = ω(A∗A), andω(·) = Tr %(·) is the given faithful state

on B(H). Let ω′(·) = Tr %′(·) be another faithful normal state onB(H). Then

1ω,ω′ = %′J%−1J

is the relative modular operator for the pair(πω(B(H)), %1/2). We shall assume that%1/2 is
in the domain of1ω,ω′ . To avoid future confusion let us emphasize thatJ stands for the
modular conjugation whileJ stands for the conjugation induced by the reversing operation.
In general,J 6= J .

A straightforward calculation gives

‖ω′‖−β = ‖1ω,ω′%
1/2‖β

(
= sup
‖A‖β61

|(%1/21ω,ω′A%
1/2)|

)
.

The relative entropyS(ω, ω′) can be defined as (cf [2, 3, 22])

S(ω, ω′) = (%1/2, log1ω,ω′%
1/2) (= Tr %1/2 log1ω,ω′%

1/2).

Lemma 12.

O > S(ω, ω′) > −‖f (11/2
ω,ω′)%

1/2‖ ‖ω − ω′‖−β (50)

where

f (x) =
{−1 if x > 1

x−1 if 0 < x < 1.

Proof. Define the functionF(x) = f (x)(x2− 1). Clearly, logx > F(x). Hence

O > S(ω, ω′) = 2(%1/2, log11/2
ω,ω′%

1/2) > (%1/2, F (1
1/2
ω,ω′)%

1/2)

> − |(%1/2, F (1
1/2
ω,ω′)%

1/2)|
> − ‖f (11/2

ω,ω′)%
1/2‖ ‖(1ω,ω′ − 1)%1/2‖

= − ‖f (11/2
ω,ω′)%

1/2‖ sup
‖πω(A)%1/2‖61

|((1ω,ω′ − 1)%1/2, πω(A)%
1/2)|

= − ‖f (11/2
ω,ω′)%

1/2‖ sup
‖πω(A)%1/2‖61

|(1ω,ω′%
1/2, πω(A)%

1/2)− (%1/2, πω(A)%
1/2)|

= − ‖f (11/2
ω,ω′)%

1/2‖ sup
‖πω(A)%1/2‖61

|(ω′(A)− ω(A)|

= − ‖f (11/2
ω,ω′)%

1/2‖ sup
‖A‖β61

|(ω′(A)− ω(A)|

= − ‖f (11/2
ω,ω′)%

1/2‖ ‖ω − ω′‖−β
for statesω′ such that%1/2 is in the domain of11/2

ω,ω′ . �
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To prove the boundedness of‖f (1
1
2
ω,ω′)%

1/2‖ we shall need

Lemma 13 (Powers, Størmer).Let A and B be positive operators on a Hilbert spaceK.
Then

||A 1
2 − B 1

2 ||2H-S 6 ||A− B||T (51)

where||S||H-S and ||S||T denote the Hilbert–Schmidt and trace norms, respectively.

Lemma 14.Let %1/2 be in the domain of1−1/2
ω,ω′ . Then

{‖f (11/2
ω,ω′)%

1/2‖} (52)

is bounded forω→ ω′ in β-norm, i.e. forω andω′ such that‖ω − ω′‖−β → 0.

Proof. Let us remark that

‖ω − ω′‖−β = sup
‖πω(A)%1/2‖61

|(ω′(A)− ω(A)|

> sup
‖A‖61

|(ω′(A)− ω(A)|

= sup
‖A‖61

|Tr{%′A} − Tr{%A}|

= ||%′ − %||T.
Hence‖ω − ω′‖−β → 0 implies%→ %′ (in the trace norm). An application of lemma 13
leads to(%)1/2→ (%′)1/2 (in the Hilbert–Schmidt norm‖·‖H-S ≡ ‖·‖). The next observation
is

‖11/2
ω′,ωx(%

′)1/2−11/2
ω′ x(%

′)1/2‖ = ‖J11/2
ω′,ωx(%

′)1/2− J11/2
ω′ x(%

′)1/2‖
= ‖x∗%1/2− x∗(%′)1/2‖ 6 ‖x‖∞‖%1/2− (%′)1/2‖ 6 ‖x‖∞‖(%′)1/2− %1/2‖T

where‖·‖T stands for the trace norm,x ∈ πω(B(H)), ‖·‖∞ denotes the norm of the algebra
πω(B(H)), and1ω denotes the modular operator associated with the pair(πω(B(H)), %1/2).
Consequently, the condition‖ω′ −ω‖−β → 0 implies11/2

ω′,ω → 1
1/2
ω′ in the strong resolvent

sense. Now we show that equation (52) does not become uncontrollably large asω

approachesω′. To this end we start with an observation that the (non-continuous) function
f can be replaced by a continuous onef1.

‖f (1ω,ω′)%
1/2‖ =

∥∥∥∥∫ 1

0
f (λ) dEω,ω′(λ) %

1/2+
∫ ∞

1
f (λ)dEω,ω′(λ) %

1/2

∥∥∥∥
=
∥∥∥∥∫ 1

0
f (λ) dEω,ω′(λ) %

1/2+
∫ ∞

1
dEω,ω′(λ) %

1/2− 2
∫ ∞

1
dEω,ω′(λ) %

1/2

∥∥∥∥.
Denote byP = ∫∞1 dEω,ω′(λ) (P is a projector). So

‖f (1ω,ω′)%
1/2‖ 6

∥∥∥∥∫ ∞
0
f1(λ) dEω,ω′(λ) %

1/2

∥∥∥∥+ 2‖P%1/2‖

6
∥∥∥∥ ∫ ∞

0
f1(λ) dEω,ω′(λ) %

1/2

∥∥∥∥+ 2‖%1/2‖ = ‖f1(1ω,ω′)%
1/2‖ + 2‖%1/2‖ (53)

where

f1(x) =
{

1 if x > 1

x−1 if 0 < x < 1.
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Now let g be a bounded continuous function. The strong resolvent convergence1
1/2
ω′,ω

to 11/2
ω′ impliesg(11/2

ω′,ω)σ → g(1
1/2
ω′ )σ for any Hilbert–Schmidt operatorσ ∈ HH-S ≡ Hω.

This result and the property of the relative modular operatorJ1ω′,ωJ = 1−1
ω,ω′ (cf [3]) imply

that

g(1
−1/2
ω,ω′ )σ → Jg(1

1/2
ω′ )Jσ

for any σ ∈ Hω and a bounded functiong. Define

f0(x) =
{

1 if x > 1

x if 0 < x < 1.

Hencef0(1
1/2
ω′,ω)J%

1/2→ f0(1
1/2
ω′ )J%

1/2 andf0(1
−1/2
ω,ω′ )%

1/2→ Jf0(1
1/2
ω′ )J%

1/2. However,

f0(1
−1/2
ω,ω′ )%

1/2 = f1(1
1/2
ω,ω′)%

1/2 where we have used the assumption that%1/2 is in the

domain of1−1/2
ω,ω′ . This result and equation (53) imply that the set{‖f (11/2

ω,ω′)%
1/2‖} is

bounded. �
In summary we have

Theorem 15.Let ω→ ω′ in β-norm where the statesω andω′ are faithful ones. Moreover,
let Kω′ > ω and%1/2 be in the domain of1ω,ω′ . Then

S(ω, ω′)→ 0. (54)

Proof. It is sufficient to show that%1/2 is in the domain of1
− 1

2
ω,ω′ . Then the theorem

follows directly from lemmas 12 and 14. Letω andω′ be two faithful states onB(H), i.e.
ω(A) = Tr %A, A ∈ B(H) andω′(A) = Tr %′A, A ∈ B(H) where% and%′ are invertible
density matrices. Let us assume thatω 6 Kω′, i.e. ω(A) 6 Kω′(A) for anyA > 0 and a
fixed positive constantK. Hence for anyA > 0

Tr(%A) 6 K Tr(%′A). (55)

So, for any one-dimensional projectorPf ,

Tr(%Pf ) 6 K Tr(%′Pf ). (56)

Consequently

% 6 K%′. (57)

We wish to show

%1/2 ∈ D(1−
1
2

ω,ω′). (58)

Let us observe that equation (58) is equivalent to the following condition:

%1/2%1/2(%′)−
1
2 ∈ HH-S. (59)

Let us consider the condition (59). We observe that

%(%′)−1/2 ∈ HH-S iff Tr ((%′)−1/2)%2((%′)−1/2) <∞. (60)

Take CONS{xi} such that%xi = λixi . Then∑
(xi, ((%

′)−1/2)%2((%′)−1/2)xi) =
∑
ij

(((%′)−1/2)xi, xj )(xj , %
2((%′)−1/2)xi) (61)

=
∑
ij

λ2
j (((%

′)−1/2)xi, xj )(xj , ((%
′)−1/2)xi) (62)

=
∑
j

λ2
j (((%

′)−1/2)xj , ((%
′)−1/2)xj ) =

∑
j

λ2
j (xj , (%

′)−1xj ). (63)
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Let us note that the reversibility of% and%′ and the inequalityK%′ > % imply

K%−1 > (%′)−1. (64)

Therefore ∑
j

λ2
j (xj , (%

′)−1xj ) 6 K
∑
j

λ2
j (xj , (%)

−1xj ) 6 K
∑
j

λj <∞. (65)

Thus Tr((%′)−1/2)%2((%′)−1/2) < ∞ so %((%′)−1/2) ∈ HH-S which completes the proof of
theorem 15. �
Remarks 16.(i) Let us emphasize that the conditionω 6 Kω′ is simply a quantum
translation of the notion ‘state close to equilibrium’(see [24, section III]).
(ii) The conditionω 6 Kω′ implies the boundedness of the analytic extension of non-
commutative Radon–Nikodym derivative for general von Neumann algebras (cf [9]). This
result in our setting leads to boundedness of%1/2(%′)−1/2 so to the condition (59).
(iii) The condition %1/2 ∈ D(1ω,ω′) is the sufficient condition for expressing||ω′||−β in
terms of relative modular operator. It is worth pointing out that the inequalityω 6 Kω′

can lead to%1/2 ∈ D(1ω,ω′). Namely, cf [6, theorem 2.3.19]),ω 6 Kω′ implies in our
setting% = (%′)1/2T (%′)1/2 whereT is a bounded positive operator. As%′ is an invertible
density operator, we infer thatT is an invertible operator. If additionally,T −1 is bounded,
then%1/2 ∈ D(1ω,ω′).

The theorem shows that if states converge to equilibrium in‖ · ‖−β-norm, then the
relative entropy converges to zero. In [24] the converse of this was obtained in the classical
case. It was also shown that for a classical system with countable sample space, the given
faithful state is the unique state with‖ · ‖β = 1, all other measures having greater norm. A
similar simple argument with Lagrange multipliers gives us the following analogous result.

Lemma 17.Let ρβ be a faithful density matrix onB(H), and define for any density matrix
ρ the norm

‖ρ‖−β =
(
Tr ρ−1

β ρ2
)1/2

.

Then‖ρ‖−β > 1 with equality if and only ifρ = ρβ . �
One can expect that the detailed balance condition, together with the spectral property,

should be helpful in the study of the asymptotic behaviour of time evolution. Some results
along these lines are presented in [21].
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