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Abstract. Let T be a stochastic map on@*-algebraA, andw a faithful state. Letr,(T)

be the induced action df on the GNS Hilbert space(,,, andx, (T)* its adjoint onH,,. We
say T obeys detailed balance Il if,,(T)* is also induced by a stochastic map. In that case we
prove thatr,,(T) is a contraction ori{,, commuting with the modular operator. The relation
of this idea to microscopic reversibility is discussed. An entropy estimate is presented.

1. Introduction

Let A be aC*-algebra with identity, and Ief; : A — A be a semigroup of linear stochastic
maps. We consider the case where 0, 1, ... (discrete time). In this case the semigroup
is the family of maps generated by a single stochastic fap 71 : A — A. ThusT,
obeys

() T, is positive: T;,(A*A) > 0 for all A € A.
(i) T.(1) = 1.
(i) Ty o T, = Ty 14, t,s = 0.

By Stgrmer’s theorem, eadh is a norm contraction [6, corollary 3.2.6].
The natural actionr,b on the dual spacel*

T 9(A) = ¢(T;A) pe A" AcA 1)

maps the set of states(A) c A* to itself. We shall be interested in a kind of inverse to
this natural action; its existence is not clear unless we make further assumptions.

In non-equilibrium, isothermal quantum statistical mechanics we have a faithful state
w, the equilibrium state at somg, invariant underT,”. The Gelfand—Naimark—Segal
construction then gives us a representatignof .4 on a Hilbert spacé+,,, with cyclic
vector ©,,, such that

(R0, 7, (A)2) = w(A).
The action ofT; on A induces an action on the dense zgtA)Q2, < H,,, which we denote
by 7, (T,) and which is defined by

ij(TZ)T[w(A)Qw = ij(TtA)Qw (2)

The question arises as to whethey(7;) is bounded or even closable. This problem goes
to the heart of Tomita—Takesaki theory. This important question was raised in [19, 20]; in
the case of continuous time it was shown that(7;) is a contraction under one further
condition, which will be called detailed balance |, and which is related to the existence of a
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7982 W A Majewski ad R F Streater

form of time-reversal for the underlying dynamics. For this reason, chemists [5] prefer the
more accurate term ‘microscopic reversibility’ for this notion, reserving detailed balance for

the original use of Tolman [28]. However, ‘detailed balance’ has permeated the literature in
physics, and even mathematics, after the paper of Glauber [14], and we shall retain it. It is
easx to check that wheR is an automorphism, then on states?of, =, (7,) corresponds

to 77,.

It is noteworthy that in [19, 20] it was not necessary to assume completely positivity
of the mapsT;: this leads to an easy proof of the contractivity. This raises the question as
to whether a similar result holds in the case of discrete time. Again, even two-positivity
leads to a short proof, by Kadison’s inequality [16]. In this paper we formulate the general
condition, detailed balance I, in the form,,(7)* is induced from a stochastic map (denoted
T#). This implies that is a fixed point of7””. In section 2 we show that detailed balance |
implies detailed balance Il, and that detailed balance Il implies#hél;) is a contraction
in H,. This gives a shorter proof than in [19, 20], and also extends the result to discrete
time. Inasmuch as detailed balance Il is more general than detailed balance | (and we have
no complete proof of this) the present result is more general than [19, 20]. The dynamics
advocated in [24] are all projections of random conservative dynamics, and were shown to
satisfy detailed balance Il, as well as being completely positive.

In the classical case, in which the algebra is abelian, ¢hi a fixed point of7}” is
sufficient for detailed balance Il (see [25, lemmas 5.23 and 5.24]). This is not so in the
guantum case, since as we show in section 2 there are stochasticTmapen in two
dimensions, for whichr,(T) is not a contraction. This is traced to the fact that it is not
Hermitian, i.e. it does not map the self-adjoint operators to themselves. We then show that
if, in addition to being closable and havirig, as a fixed pointy,,(7T)* is induced by a
Hermitian mapT#, thenT? is positive, and so is a stochastic map. In section 3 we discuss
the relation between the two forms of detailed balance; the section ends with some entropy
estimates.

2. Detailed balance and contractivity

Suppose thar is a stochastic map ad and thatT? is another related by

(70 (A) R, Mo (T (B) Q) = (0 (TP) 7, (A) R, 0 (B) Q) (3)
which from the definition gives
®(A*T(B)) = o(T*(A")B). @)

This condition, called detailed balance IlI, impli&sinvariance of the state:
o(T(A) = 01T (A)) = (TP (D A) = w(A).

Since T# is positive, it is Hermitian, and since it is stochastic, it is a contraction in
norm. Then

170 (T) 70 (A) Qo 1> = (T (AT (A)) = w(A*TPT(A))
< w(A* )20 (TF(T A))*TF(T (A))Y/?
= w(A* )2 (AT (T (TH(T (A)))))"?
< w(A* )20 (A* Ao (TP (T (TP (T A TP (T (TP(T (A)))) Y

< oA"Y o(THT - (A)TP - T (A)YY?
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for all n. Now

w(A* A" > w(A*A) asn — oo

2—(n—=1)

lw(B*B)|>" < ||A|l -1 asn — 00

whereB = T#(T - .- (A)). Therefore, taking: — oo,
177 (T) 70 (A) R0 1> < @(A*A) = ||, (A) Q0|1 (5)
Thus we have proved

Proposition 1.Detailed balance Il implies the contractivity of the induced mgg7) on
He- O

There have been various versions of the detailed balance condition; apart from [19],
one can mention [1, 4, 11, 12, 17, 15, 18]. These concern continuous time, and mostly
require complete positivity; in [18], the Hamiltonian part of the Lindblad generator is taken
to be the KMS Hamiltonian, an assumption that we do not need. Moreover, the assumption
that the generator commutes with the modular operator, made in [1] and [15], is a result
of our formulation, rather than a postulate. Neither do we need the generator to be a
normal operator, as used in [17]. Agarwal’s treatment is rigorous in finite dimensions, and
has a special form for the time-reversal operator. Alicki’'s definition was given in finite
dimensions, and requires normality of the generator; in [11] (an abstract version of [4])
normality is also required, which is not used here. Comparison of [17] with detailed
balance | has been discussed in [20]; apart from complete positivity, [17] needs splitting
the generator of the semigroup which is not required here.

We now give an example, in two dimensions, which shows Thheing stochastic with
o an invariant state is not enough to ensure that7') is a contraction. Some condition
like detailed balance Il is needed for this; in our examglé,is not a Hermitian map, and
this suggests that hermiticity rather than positivity might be enough; such an idea is indeed
shown to be so.

Example 2.Let A be the algebra of all complexs22 matrices, and leb, be the ‘Powers’
state with density matrix

—<X 0) A=1+eh)?
=\o 1-» - '

The tracial state. = % corresponds to the infinite-temperature stéte- 0. Consider the

map
X X X X
T(X)=T< 1 2)=< 1 3>.
X3 X4 X2 X4
It is well known [10] thatT is a linear, positive and identity-preserving map. It is not
strongly positive; i.e.

T(A*A) > T(A*)T(A) (6)

(Kadison’s inequality [16]) does not hold.
Let us consider the natural action on the states

(T" (@), A) = Tr(pgT(A)) = Tr(psA")
=Tr(pg A) = Tr(psA) = wi(A)
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S0 w, is a fixed point of 7°. For B < oo, H, is the spaced with scalar product

(A, By = Tr(A*B) and cyclic VeCtOI’,O;/Z. Let us define

75(T)Xpg* = T(X)p5”.
Then we see that

1Xp5 %12 = 0,(X*X) = A(jxaf? + x312) + (1 — M) (2l + |xal?)
whereas

1T (X)p/ %112 = A(Ix1l? + Ix21?) + (L = W) (Ix3l? + |xal?).

Now we cannot have
A(xa)? 4 2212 4+ (L = 2 (x3? + 1xal®) < A(x1? + |x3l®) + (L= 2 (|x2l® + [x4]?)

holding for all x,, x3, at least ifA £ % We conclude thatrg(T) is not a contraction, and
so thatT# is not stochastic. A simple calculation shows that

X3 X4

o,

A
— |x X
1-1 /%2 4

We see that this is not a Hermitian mapnit£ 1/2.

We now show that positivity can be replaced by hermiticity and a closability property.
To explain our idea, let us recall the fundamental ingredients of Tomita—Takesaki theory.
Consider a von Neumann algehf& on a Hilbert spacé{ with a cyclic and separating
vector 2. So, the stata(A) = (2, AQ), A € M is faithful. Define

SoAQ = A*Q AeM 7
and denote the closure 6§ by S. Let A be the unique, positive, self-adjoint operator and
J the unique anti-unitary operator occurring in the polar decomposition

S = JAY? (8)

A is called the modular operator associated with the gait, 2) and J is called the
modular conjugation (cf [6]). The following theorem can be extracted from the proof of
[20, observation 3, theorem 3.10]:

Theorem 3Let T be a stochastic map on a von Neumann algebtacting on a Hilbert
spacek’,,; let » be a faithful vector state; le@ € K, be the (cyclic and separating) vector
giving the statav, and define the operatdtr on the dense seMQ by

T(AQ) = T(A)Q. 9)

Suppose thaf” is closable. LetM, be the set of self-adjoint elements .4, and suppose
that 7* mapsM;Q to itself. Then the closure of commutes strongly with the modular
operator on the domainm Q2 + iM; Q.

Corollary 4. Let M be a von Neumann algebra with cyclic and separating ve@tand
T : M — M a stochastic map oM obeying detailed balance Il. DefirfeAQ2 = T (A)S2.
Then,T commutes strongly with the modular operator.

For T is a densely defined contraction, and so is closable; being positive Hermitian,
and so maps the self-adjoint elements to themselves. The same holfl%, fdetermined
by T#, which is positive by detailed balance II. O

The next theorem is another immediate consequence of theorem 3.
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Proposition 5.Let M be a von Neumann algebra G with cyclic and separating vector
Qe HandT : M — M be a stochastic map. Assume tH&f is a linear bounded
Hermitian map onM such that

(AQ, T(B)Q) = (TP (A)Q, BRQ). (10)
Let 7 : H — ‘H be defined by

TAQ = T(A)R.
Then? commutes strongly with the modular operator on the dorefiyQ2 + i M.
Proof. TAAQ = TA(A)Q is a densely defined linear operator. Then

(TBAQ, BQ) = (AQ, TBQ) = (T*AQ, BQ) A, B e M. (11)
HenceT* is densely defined s@& is a closable operator. Thus, another application of
theorem 3 gives the commutativity @f with the modular operator. O

In elementary quantum mechanicd,= B(H) andw, a faithful normal state, is given
by w(e) = Tr(pe), wherep is a density matrix ori{ with a densely defined inverse. For
7,(A) we take left multiplication byA, with cyclic vectorQ = ¢%/?, in the spaceC of all
Hilbert—Schmidt operators oR, with scalar product irkC = Hy.s given by

(X,Y) =Tr(X*Y) X,Y € H,. (12)
Thus
7,(A)BoY? = ABoY/? A, B e A. (13)

Here and in the remainder of this sectignt will denote the von Neumann algebra &h
generated by, (A), A € A}.
The modular operatot and the modular conjugation are defined on the densd g¥t

by
AApY? = 0Ao™"? = oA 0"? (14)
JAQY? = pA*. (15)
We see in particular thah/2AQ = oY% A0~ 1/2Q.

Theorem 6.Let T be a normal stochastic map o(H) andw a faithful normal state on
B(H) such thatw o T = w; let K = H,, be the Gelfand—Naimark—Segal space andlet
be the positive, invertible density matrix ifi(7{) corresponding taw. Assume that there
exists a bounded Hermitian linear m#& on B(H) such that

w(BT(A)) = w(T?(B)A) A, B e M. (16)
ThenT? is a stochastic map.
Proof. We first show thafr'#(1) = 1. The T-invariance of» and equation (16) imply
(TP (D)%%, 40" = (TP (DA) = 0(T(A) = 0(A)
= ("2, 40"

HenceT?(1)o? = o%/?, so asp'/? is separating forM, we haveT?(1)* = T#(1) = 1.
To prove the positivity off'#, let TT be the infinite-temperature conjugation, i.e.

Tr(A*T(B)) = TH(TT(A*)B) for all A of trace class an® < B(H). a7)

t That is, ultrastrongly continuous.
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Thus, TT is the restriction of7”” defined in (1) to the density matrices, and so is positive
(asT is positive), and forA, B € B(H)
Tr(oT?(B)A) = o (T*(B)A) = w (BT (A)) = Tr (0BT (A))
=Tr(T"(0B)A) for all A.
Hence
T1(oB) = oT?(B) for all B. (18)

As T : B(H) — B(H) uniquely defines a map oM, we shall denote the latter by
the same symbol. Next, we observe that the commutativity? otvith the modular
operator (proposition 5) implies the commutativity Bfwith the modular automorphism
a,(e) = A" ¢ A7, Moreover, a calculation shows that the modular group is given by
at(') — Qil . int.
This fact, the definition of"* and the implementability of,, give the commutativity of'f
with «;; to see this, letd € B(H) and letB be of trace class. Then
Tr(, TT(B)A) = TH(T T (B)a—(A)) = Tr (BT (a1 (A)))

= Tr(Ba_,T(A)) = Tr(a;(B)T (A))

= Tr (T"(e:(B))A).
Since this holds for al4, we have
o, TT(B) = T (o, (B)). (19)

We shall use this equation for certain complexto justify this, note again that, is
implemented by" - o7"; then equation (19) gives

Q"TI(B)o™" =T'(¢"Bo™). (20)
We are interested iB of the form B = o¥/?A¢%?, A € B(H). For such elements an
analytic continuationr — z =t + is of € Be™" into the strip—% <s < % is possible; for
the proof, note that

Qit—.ygl/zAgl/ZQ—it-H — Qit (Ql/z—sAQ1/2+s) Q—ir

is of trace class, sp¥?40%? is an analytic element in this strip, and such a set is invariant
underT, as this commutes with,. So the left-hand side of equation (19) has an analytic
continuation into the strip. Putting= —% gives

Q"*T'(B)o™2 =T (¢"*Bo™"?) (21)
for B of the form B = ¢Y/?A0%? giving

02T (0'2A0"?) 072 = TT(0A) = 0T%(4) (22)
by equation (18). Hence

Tﬂ(A) _ Q—l/ZTT (Q1/2AQ1/2) Q—l/z (23)
and so is positive ifA is positive. Thus we have proved theorem 6. |

In the classical case the positivity df? follows from that of T, as remarked in
[25, lemma 5.24]. In the quantum case, our counterexample shows that this fails, but
this theorem shows that we can replace detailed balance Il by the conditiorEthisita
Hermitian map andv is invariant underr .
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3. Relationships between two forms of detailed balance

In [19] the following condition, detailed balance I, was introduced; it involves the concept
of microscopic reversibility, which was expressed thus: there exists an anti-linear Jordan
automorphisnmo of A of order two (i.e.o? =id) such that

(o (A)o(B)) = w(o(AB)) for A,Be A (24)
and

w(A*B) = w (6(B"o(A)). (25)
Then we say that a stochastic map .dnobeys detailed balance | if for alk, B € A we
have

w (A*T(B)) = o (6 (B*)T (0 (A))). (26)
It will become clear that detailed balance | implies detailed balance II; this will be expressed
in theorem 7. In addition, detailed balance | implies that there exists a basis in the
representation spadd, in which = (7T') is symmetric (in the sense of (27) below). It seems
to be impossible to derive this property from detailed balance I, leading us to believe that
Il is a properly weaker condition than I. In the case of a theory with a finite number of
degrees of freedom, we shall consider a similar but more detailed condition which together
with detailed balance Il implies detailed balance | (see theorem 10 in section 3.2). For the

rest of this section we shall consider the system described by a.pair B(H), w), as in
equations (12)—(15), and a stochastic nfapn .4. We start with the easy direction.

3.1. Consequences of detailed balance |

Theorem 7.Supppose thaf" obeys detailed balance |, equation (26) relative to a time-
reversalo. ThenT obeys detailed balance Il and in addition there exists a Hagjsof
Hu.s such thatr,,(T) is symmetric (not Hermitian) in this basis, i.e.

Tie = (Yis T (T ye) = (Yo, To(T)yi) = Tok- (27)
Proof. From equation (26) we have
w(A*T(B)) = w (0 (B*)To (A))
=w (G(B*)G(a oT o O’(A))
and by (25)
w(A*T(B)) =w (0 o T 00 (A*)B).

Therefore the adjoinT’? relative to the KMS scalar product coincides with the stochastic
mapo o T o o, and soT obeys detailed balance II.

We now construct the basis in which,(T) is symmetric. Indeed, the operatgf
defined by

JAo"? = o (A)o*? (28)

defines a conjugation oHy.s, a separable Hilbert space. Therefore there exists a real basis
{v;}, i.e. a basis with

jyj:yj forj:1,2,.... (29)
Then from equation (26) we have
(A0Y?, 7,(T)Bo) = (T Bo"?, 7, (T) T Ao"?) (30)
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and for the real basis
(V> T (T)ye) = (ye, w0 (T)yi) (31)
which proves the theorem. O

It turns out that because of the multiplicity of the eigenvalue \ofve are unable to
be more specific aboyty}; in particular, we cannot prove that every dyad associated with
the spectral resolution qf can be chosen to be real (see the next topic).

3.2. Consequences of detailed balance Il

To get some kind of converse to theorem 7, denotéxblya basis inH of the eigenvectors
of ¢ (the density matrix ofv). This basis is not determined uniquely; for example, we can
change the phases. We define the conjugakioby

Kf=K Z(xi, fxi = Z iy Pxi (32)

for f € H, so that the basis ieal relative toK. It is easy to observe that

() K is a well-defined conjugation ok,
(ii) the map

Hus>pr— KoK = J(p) € Hus (33)
defines a conjugatioy on Hy.s.

We note thab is a real vector in this basis, so thd/? = o'/2. Without trouble we can
define an operatoA on H to be real ifA = KAK. Extended to complex combinations of
real operators we have an antilinear mamcting onA = B(H). Let Vy be the positive
cone of the representation, i.e.

Vo = {m.(A)0"?% AeB(H), A>0}. (34)
ThenJVy C V, for
T 1o(ANT,(A)Y? = T, (AN T T (AT o"?
= 71,(0 (A*A))oY? € V. (35)

Consequently, we can extemdto a reversing operation am,(A)”, i.e. o is an antilinear
Jordan automorphism of order two, of the von Neumann algebra generated by the
representation. (cf [20, lemma 4.11]). Define the operators of rank ori¢ anby

xRy f = fy for x,y, f e H. (36)

The inner product is taken to be linear in the second factor. Then the fémiyy} form
an orthonormal basis if{y.s [27]. We note thatlx ® y)* =y ® x. Then

0= Z)\npn == Z)"n(fn ®xn)~ (37)
Now let us define the operatd;; : Hy.s — Hu-s by

Eijp = PipP;.
This is a projection, and;; E;, = 0 unlessi = k and j = £. Thus

A= "3"WE;
i
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is the spectral resolution of the modular operator, with eigenvaiyes: A, 2; and spectral

projection
0,= Y Ey

i,j:Ejj=E
The action of A on Hu.g is

Ap =Y a"NPipP;.

ij
Obviously
TA(p) = AT p).

We now give a lemma which explains the algebraic content of the proposed converse to
theorem 7.

Definition 8. Let us denote

Wjj ke = ® ()_cj QxiT(xX; ® xz)) (38)

a)iﬂj,kZ =w ()_c, RxTPx ® )Cg)) (39)
and

Tijke = (Xi @ xj, W (T)Xi & x¢) (40)

ke = (% © xj, o (T7) X ® x0). (41)
Lemma 9.Let T satisfy detailed balance Il; then we have

Tijke = ()hi)\k)il/zwij,kl (42)

f e = Gid) V20l 4, (43)

Proof. By proposition 1,7,(T) and its adjoint are bounded. We see
Tijke = (X ® x;, o (T) Xi @ x¢) = Tr(X; @ x; - nw(T)X,:l/sz ® x.0"?)
=Trx; @ x; - T(AY%%, ® x0)0?
= TroY, %%, @ x; - T O %%k ® x0)0Y?
= (ire) YPwij e
A similar argument proves the second part. O

We are now ready to impose a further condition on a stochastic Thaghich, with
detailed balance Il, implies detailed balance I. We say Thisteffectively symmetriif there
exists a choice of phase of the eigenvectgrs = 1, 2, ... such that

Tij ke = Tke,ij for all i, j, k, L. (44)

Theorem 10Let T be a stochastic map that obeys detailed balance Il relative to a normal
statew and suppose thar is effectively symmetric. Therf obeys detailed balance |
relative tow and the time-reversal given kyy coming from equation (33).
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Proof. By detailed balance Iz, (T) is a bounded operator. The reversing operasidmas
the property thak; ® x; are real. By lemma 9, and the fact thatis real for all j, we see
thatw is effectively symmetric:

Wij ke = Wke,ij- (45)
This can be written as
w(A*T(B)) = w(B*T(A)) = w(c(B*)To (A)) (46)

whereA = X;®x; andB = X, ®x,. This is the condition for detailed balance |, equation (26)

for dyads. Both sides are sesquilinear, and can be extended to the complex span of the
dyads; any element of A is the strong limit (in H) of sums of dyads, and a§, — C
strongly, A,0%? — Co%? in ‘H,,. Since the scalar product is continuous in this topology,
andr,(T) is a bounded operator, we have proved detailed balance | in the form of{26).

Remarks 11Under the conditions of the theorem, one can show the following.

(i) o commutes withT + T#, the dissipative part, and anticommutes with— 7#), and
so also commutes with the Hamiltonian part.
(ii) We also have

?ij,kl = Ti/j,kZ' (47)

(iii)y Consider a uniformly continuous semigroup of linear operators- €4 on a Hilbert
spaceK. Then, the symmetry of, in some fixed basis implies the symmetry of the
infinitesimal generatoA in the same basis. Next, the symmetryAy, is equivalent to the
compatibility of the decompositiod into Hamiltonian and dissipative pari (= iH + D)

with the decomposition ofi,,, into real and imaginary parts.

To present an example of a semigroup satisfying equation (44) let us consider a self-adjoint
operator

H=) i ®x
n

where{x,} is some fixed CONS ifC, and a real symmetric matriR,,,. Then define the
semigroupr; = €4 by fixing the infinitesimal generator

A=iH+D= iZA,,E@x,, —}—ZDmnx_,,(X)xm.
Clearly, 7, satisfies (44) and generally does not commute witlD.
(iv) The conditionT = T# (which is often used, and is obviously much stronger that
detailed balance Il) implies tha;; x, is Hermitian rather than symmetric. It does not seem
to be connected with microscopic reversibility, i.e. the existence of a reversing operator
Rather, it expresses the vanishing of the Hamiltonian p&ft,~ 7#) of the dynamics.
Models constructed by projections of random reversible dynamics [25] do not in general
obey this hermiticity condition.
(v) Either hermiticity or symmetry implies

2 2
lwij ™ = lwg,ij] (48)

which is Pauli’s form of the detailed balance.
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3.3. Dual norms

In [24, 26] and [25, theorem 5.33], the use of the dual KMS-norms in the study of Markov
chain was described. In particular, it was shown that estimates of the relative entropy play
a crucial role in the description of the states close to equilibrium. We want to close this
section with a relation between the relative entropy in the quantum case and the dual KMS-
norms, but in the opposite direction from that of [24] and [26]. The norm dual to that given
by the Kubo—Martin—Schwinger construction (cf [24]) can be defined as

Ivli—g = sup [v(A)] (49)

lAllp<1

wherev is a state orl3(H), ||A||§ =w(A*A), andw(-) = Tro(-) is the given faithful state
on B(H). Letw/(-) = Tro'(-) be another faithful normal state d(#). Then

Aw,a/ = Q/JQ71J
is the relative modular operator for the péir, (B(H)), 0*/?). We shall assume that/? is
in the domain ofA,, .». To avoid future confusion let us emphasize tliastands for the
modular conjugation whileg/ stands for the conjugation induced by the reversing operation.
In general,J # J.

A straightforward calculation gives

l'll—p = 1 Aw.we”?l5 (z sup |(91/2Aw,wagl/2>|>.
I Allg<1
The relative entropy (w, «’) can be defined as (cf [2, 3, 22])
S(w, ) = ("%, 10g Ay.0"?) (= Tro"?log A, 0.
Lemma 12.
0 > S(w,0) =~ f(AY2 )|l llo — 'l|_g (50)
where
-1 ifx>1
f&x) = . _
X if0 <x < 1.
Proof. Define the functionF (x) = f(x)(x? — 1). Clearly, logx > F(x). Hence

0 > S, ) = 2" log A2 0" > (02 F(A2)0"?)

> — (Y2 F(AY?)0Y?)

1/2
— £ AY2 )02 1(Ay.o — D02

—IFAL2)e™2 I sup  [((Aw. — DoY2 m,(A)0™?)]

w
I (A)e*2]1<1

1/2
—IFALZ)0™) sup  [(Awwo"? mu(A)eY?) — (02 m.(A)0Y?)]
7o (A)oY?(<1

WV

= —If(A2)e"l  sup  (@/(A) - w(A)|

I (A)e"2]1<1

= —IF(AY2)oY?|| sup |(@'(A) — w(A)|
IAllp<1

1/2
= — 1£(A2)0™?I llw — o'l| g

for statesw’ such thato¥? is in the domain ofA*? . O

w,w’
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To prove the boundedness pf (A2 ,)o?| we shall need

Lemma 13 (Powers, Starmetlet A and B be positive operators on a Hilbert spake
Then

IIAZ—BZIIHS I|A — Bllt (51)
where||S||4-s and||S||T denote the Hilbert—Schmidt and trace norms, respectively.
Lemma 14 Let o¥? be in the domain ofﬁ_l/2 Then

F 2021 (52)
is bounded fotw — o' in B-norm, i.e. forw ande’ such thatw — o’[|_g — 0.

Proof. Let us remark that

lo—o'll-g= " sup (&' (A) — o (A)
I (4)0M2] <1

> sup |(@'(A) — o (A)]

lAl<1
= sup | Tr{o’A} — Tr{oA}|
lal<1
=lle" —ellr.
Hencellw — o[- — 0 impliesg — o’ (in the trace norm). An application of lemma 13
leads to(o)Y/? — (0’)*2 (in the Hilbert—Schmidt nornjj- ||4.s = || -||). The next observation

is
1/2 1/2 ’ 1/2 1/2
1A 5x (@)Y = ALPx (@)Y = 1Ay 7x (@)Y = T AL x (@)Y

= llx*e"? —x* ()" < ||x||m||gl/2 = @21 < Ixllooll @)Y = ™27
where|| - ||+ stands for the trace norm, e 7, (B(H)), || - |l.o denotes the norm of the algebra
7,(B(H)), andA,, denotes the modular operator associated with the(paitB(H)), o/?).
Consequently, the conditiofw’ —w| g — 0 |mpI|esA1/2 — Al/z in the strong resolvent
sense. Now we show that equation (52) does not become uncontrollably large as
approaches’. To this end we start with an observation that the (non-continuous) function
f can be replaced by a continuous ofie

1 00
I f (Do)l = /o FO) dE, » () 0M% + / FONAE, (1) 0¥
1

1 0 00
=H / f) dE, () 0¥ + / dE, ., () 0¥* -2 / dE, (1) oY/?
0 1 1

Denote byP = fl°° dE, . (1) (P is a projector). So

+ 2| Po™?

£ (Aww)o™?) < H /O i) dE,, o (1) 0M?

+ 210Y21 = Il fa(Aww)0™ 1 + 21102 (53)

< H / i) dE, (1) 02
0

where
1 if x >1
filx) =

x ! if0 <x < 1.
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Now let g be a bounded continuous function. The strong resolvent converg:eﬁée
to AY? implies g(AY2 Yo — g(AY?)o for any Hilbert—-Schmidt operater € Hy.s = H,,.

This result and the property of the relative modular operaty, ,J = Aw}w, (cf [3]) imply
that

gAY H0 = Jg(AYA o
for anyo € H,, and a bounded functiog. Define

1 ifx>1

X if0 <x < 1.

folx) = {

Hence fo(AL2) T oY% — fo(AyH)JoY? and fo(A,V7)0Y? — Jfo(AL)ToY2. However,
fo(A,YP0Y? = fu(AL?)0Y? where we have used the assumption th&? is in the

domain of A_7/?. This result and equation (53) imply that the gt (A./%)0™?|} is
bounded. O

In summary we have

Theorem 15Let w — o' in B-norm where the states and’ are faithful ones. Moreover,
let Ko’ > w ando/? be in the domain oA, ,,. Then

S(w, w) = 0. (54)

,_‘

Proof. It is sufficient to show thap'/? is in the domain ofA,2,. Then the theorem
follows directly from lemmas 12 and 14. Letandw’ be two fa|thful states o5(H), i.e.
w(A) =TrpA, A € B(H) andw/'(A) = Tro’A, A € B(H) wherep and’ are invertible
density matrices. Let us assume thak Ko', i.e. w(A) < Kw'(A) forany A > 0 and a
fixed positive constank. Hence for anyA > 0

Tr(oA) < K Tr(o'A). (55)
So, for any one-dimensional projectsy,

Tr(oPr) < K Tr(o'Py). (56)
Consequently

o< Ko (57)
We wish to show

o¥2 € D(A,2). (58)
Let us observe that equation (58) is equivalent to the following condition:

0"20Y%(0')"% € Hps. (59)

Let us consider the condition (59). We observe that

0@ P eHus  iff Tr@)*e*((@)™?) < oo (60)
Take CONS{x;} such thatox; = A;x;. Then
Y i (@) %@ x) = ) (@) i, x)) (x5, 0%((@) ) (61)

ij
= 2@ MP)xi xp) (. (@) P)x) (62)
ij

= D 2@ P, (@) M) =) a2, (@) ). (63)
J J
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Let us note that the reversibility @f ando’ and the inequalityk o’ > o imply
Ko™ > (o)™ (64)
Therefore
D 22, (@) ) <KDY DA (@) ) K ) Ay < oo (65)
J J J

Thus Ti(0")"Y2)0%((0")Y?) < oo s0 0((0)~Y?) € Hp.s which completes the proof of
theorem 15. O

Remarks 16(i) Let us emphasize that the conditian < K&’ is simply a quantum
translation of the notion ‘state close to equilibriurfsee [24, section III]).

(i) The conditionw < Ko’ implies the boundedness of the analytic extension of non-
commutative Radon—Nikodym derivative for general von Neumann algebras (cf [9]). This
result in our setting leads to boundednesg®f(o’)~%? so to the condition (59).

(iii) The condition o¥/? € D(A,,.) is the sufficient condition for expressingy'||_s in
terms of relative modular operator. It is worth pointing out that the inequality K’

can lead top? € D(A, ). Namely, cf [6, theorem 2.3.19]}p < Ko’ implies in our
settingo = (0)¥?T (0")¥? whereT is a bounded positive operator. ASis an invertible
density operator, we infer that is an invertible operator. If additionally; ~* is bounded,
theno? € D(A, ).

The theorem shows that if states converge to equilibriun in|_g-norm, then the
relative entropy converges to zero. In [24] the converse of this was obtained in the classical
case. It was also shown that for a classical system with countable sample space, the given
faithful state is the unique state with | = 1, all other measures having greater norm. A
similar simple argument with Lagrange multipliers gives us the following analogous result.

Lemma 17 Let pg be a faithful density matrix o8(#), and define for any density matrix
o the norm
_ 1/2
ol = (Trp;"0?)"".
Then | pll—g = 1 with equality if and only ifp = pg. O

One can expect that the detailed balance condition, together with the spectral property,
should be helpful in the study of the asymptotic behaviour of time evolution. Some results
along these lines are presented in [21].
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